Activities per year
Abstract
3D printing (3DP) by fused deposition modelling (FDM) is one of the most extensively developed methods in additive manufacturing. Optimizing printability by improving feedability, nozzle extrusion, and layer deposition is crucial for manufacturing solid oral dosage forms with desirable properties. This work aimed to use HPMCAS (AffinisolTM HPMCAS 716) to prepare filaments for FDM-3DP using hot-melt extrusion (HME). It explored and demonstrated the effect of HME-filament composition and fabrication on printability by evaluating thermal, mechanical, and thermo-rheological properties. It also showed that the HME-Polymer filament composition used in FDM-3DP manufacture of oral solid dosage forms provides a tailored drug release profile. HME (HAAKE MiniLab) and FDM-3DP (MakerBot) were used to prepare HME-filaments and printed objects, respectively. Two diverse ways of improving the mechanical properties of HME-filaments were deduced by changing the formulation to enable feeding through the roller gears of the printer nozzle. These include plasticizing the polymer and adding an insoluble structuring agent (talc) into the formulation. Experimental feedability was predicted using texture analysis results was a function of PEG concentration, and glass-transition temperature (Tg) values of HME-filaments. The effect of high HME screw speed (100 rpm) resulted in inhomogeneity of HME-filament, which resulted in inconsistency of the printer nozzle extrudate and printed layers. The variability of the glass-transition temperature (Tg) of the HME-filament supported by scanning electron microscopy (SEM) images of nozzle extrudates and the lateral wall of the printed tablet helped explain this result. The melt viscosity of HPMCAS formulations was investigated using a capillary rheometer. The high viscosity of unplasticized HPMCAS was concluded to be an additional restriction for nozzle extrusion. The plasticization of HPMCAS and the addition of talc into the formulation were shown to improve thickness consistency of printed layers (using homogeneous HME-filaments). A good correlation (R2 = 0.9546) between the solidification threshold (low-frequency oscillation test determined by parallel-plate rheometer) and Tg of HME-filaments was also established. Drug-loaded and placebo HPMCAS-based formulations were shown to be successfully printed, with the former providing tailored drug release profiles based on variation of internal geometry (infill).
Original language | English |
---|---|
Article number | 121553 |
Journal | International Journal of Pharmaceutics |
Volume | 616 |
DOIs | |
Publication status | Published - 25 Mar 2022 |
Externally published | Yes |
Keywords*
- 3D printability
- FDM
- Filament
- Heat-fusion deposition
- Mechanical properties
- Printability
- Rheology
Field of Science*
- 3.1 Basic medicine
Publication Type*
- 1.1. Scientific article indexed in Web of Science and/or Scopus database
Fingerprint
Dive into the research topics of '3D printing of pharmaceutical oral solid dosage forms by fused deposition: The enhancement of printability using plasticised HPMCAS'. Together they form a unique fingerprint.Activities
-
Methods and Protocols (Journal)
Mohylyuk, V. (Reviewer of journal article)
3 Nov 2024Activity: Publication peer-review and editorial work types › Publication Peer-review
-
Karlis Grundsteins
Mohylyuk, V. (Host)
1 Nov 2024Activity: Hosting a visitor types › Hosting an academic visitor
-
Pharmaceutics (Journal)
Mohylyuk, V. (Guest Editor)
29 Sept 2024 → 30 Mar 2025Activity: Publication peer-review and editorial work types › Editorial work