A novel approach for nucleic acid delivery into cancer cells

Dace Vainauska, Svetlana Kozireva, Andrejs Karpovs, Maksims Čistjakovs, Mihails Bariševs

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)

Abstract

Background. Liposomal magnetofection is based on the use of superparamagnetic particles and cationic lipids and shows better transfection efficiency than other common nonviral gene delivery methods; however, the distribution of aggregate complexes over the cell surface may be ununiform. The use of a dynamic gradient magnetic field could overcome this limitation. A newly developed device for magnetofection under a dynamic magnetic field was used to compare the transfection efficiency of prostate carcinoma cell line PC3 with that obtained by lipofection and magnetofection. Material and Methods. Reporter plasmid pcDNA3.1LacZ DNA was used in combination with Lipofectamine2000 reagent and superparamagnetic nanoparticles CombiMag. The effects of incubation time under a dynamic magnetic field and a rotation frequency of magnets on transfection efficiency for PC3 cell line were determined. Alternatively, lipofection and liposomal magnetofection were carried out. Transfection efficiency of delivery methods was estimated by β-galactosidase staining; cell viability, by acridine orange/ethidium bromide staining. Results. Liposomal magnetofection under a dynamic gradient magnetic field demonstrated the highest transfection efficiency: it was greater by almost 21% and 42% in comparison with liposomal magnetofection and lipofection, respectively. The optimal incubation time under dynamic magnetic field and the optimal magnet rotation frequency were 5 minutes and 5 rpm, respectively. Liposomal magnetofection under a dynamic gradient magnetic field was less cytotoxic (7%) than that under a permanent magnetic field (17%) and lipofection (11%). Conclusions. Our new approach, based on the use of a dynamic gradient magnetic field, enhanced the transfection efficiency and had a less cytotoxic effect on prostate cancer cells in comparison with the standard magnetofection and lipofection.

Original languageEnglish
Pages (from-to)324-329
Number of pages6
JournalMedicina (Lithuania)
Volume48
Issue number6
DOIs
Publication statusPublished - 2012

Keywords

  • Cancer cells
  • Dynamic gradient magnetic field
  • Gene delivery
  • Liposomal magnetofection

Field of Science

  • 3.2 Clinical medicine

Publication Type

  • 1.1. Scientific article indexed in Web of Science and/or Scopus database

Fingerprint

Dive into the research topics of 'A novel approach for nucleic acid delivery into cancer cells'. Together they form a unique fingerprint.

Cite this