TY - JOUR
T1 - Age-dependent changes in visceral adiposity are associated with decreased plasma levels of DHEA-S in sigma-1 receptor knockout male mice
AU - Stelfa, Gundega
AU - Miteniece, Anna
AU - Svalbe, Baiba
AU - Vavers, Edijs
AU - Makrecka-Kuka, Marina
AU - Kupats, Einars
AU - Kunrade, Liga
AU - Parfejevs, Vadims
AU - Riekstina, Una
AU - Dambrova, Maija
AU - Zvejniece, Liga
N1 - Raksta oriģinālpublikācijā un Web of Science publikācijā norādītais publicēšanas datums ir 2025.gada janvāris. Scopus datubāzes publikācijā norādīts nepareizs publicēšanas datums (2024.g.janvāris).
Publisher Copyright:
© 2024 The Authors
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.
PY - 2025/1
Y1 - 2025/1
N2 - The sigma-1 receptor (S1R) is involved in intracellular lipid synthesis and transport. Recent studies have shown that its genetic inactivation impairs adipogenic differentiation in vitro. This study investigated the role of S1R in adipose tissue physiology and metabolic health using adult and old WT and S1R KO mice. Visceral fat mass was increased in adult, but not old S1R-KO male mice compared to that of WT mice, despite having similar body weights, food intake, and energy expenditure. The average adipocyte size was 64 % larger in adult KO mice than in adult WT mice. Adult S1R-KO mice showed reduced plasma dehydroepiandrosterone sulfate (DHEA-S) and elevated fasting plasma leptin concentrations. Lipidomic analysis revealed alterations in plasma metabolite concentrations, particularly reduced levels of sphingomyelins, ceramides, phosphatidylcholines, lysophosphatidylcholines, and cholesteryl esters in adult mice. Decreased expression of Pparγ, Adipoq, and Atgl was detected in visceral white adipose tissue (vWAT) isolated from adult KO mice. Additionally, Fabp4 and Adipoq expression levels were significantly lower in KO adipose-derived stromal cells than in WT adipose-derived stromal cells. A fivefold increase in the mitochondrial fatty acid oxidation rate and a 43 % increase in electron transfer coupling capacity were detected in adult S1R-KO vWAT. In summary, our investigation revealed an age-dependent association between increased visceral adiposity and decreased plasma levels of DHEA-S in S1R-deficient male mice. These findings underscore the potential role of S1R in regulating metabolic processes in adipose tissue and suggest that DHEA-S is a potential mediator of adiposity changes in the absence of S1R.
AB - The sigma-1 receptor (S1R) is involved in intracellular lipid synthesis and transport. Recent studies have shown that its genetic inactivation impairs adipogenic differentiation in vitro. This study investigated the role of S1R in adipose tissue physiology and metabolic health using adult and old WT and S1R KO mice. Visceral fat mass was increased in adult, but not old S1R-KO male mice compared to that of WT mice, despite having similar body weights, food intake, and energy expenditure. The average adipocyte size was 64 % larger in adult KO mice than in adult WT mice. Adult S1R-KO mice showed reduced plasma dehydroepiandrosterone sulfate (DHEA-S) and elevated fasting plasma leptin concentrations. Lipidomic analysis revealed alterations in plasma metabolite concentrations, particularly reduced levels of sphingomyelins, ceramides, phosphatidylcholines, lysophosphatidylcholines, and cholesteryl esters in adult mice. Decreased expression of Pparγ, Adipoq, and Atgl was detected in visceral white adipose tissue (vWAT) isolated from adult KO mice. Additionally, Fabp4 and Adipoq expression levels were significantly lower in KO adipose-derived stromal cells than in WT adipose-derived stromal cells. A fivefold increase in the mitochondrial fatty acid oxidation rate and a 43 % increase in electron transfer coupling capacity were detected in adult S1R-KO vWAT. In summary, our investigation revealed an age-dependent association between increased visceral adiposity and decreased plasma levels of DHEA-S in S1R-deficient male mice. These findings underscore the potential role of S1R in regulating metabolic processes in adipose tissue and suggest that DHEA-S is a potential mediator of adiposity changes in the absence of S1R.
KW - Adipose tissue-derived stromal cells
KW - Dehydroepiandrosterone sulfate
KW - Lipid metabolism
KW - Mitochondrial function
KW - Sigma-1 receptor
KW - White adipose tissue
UR - http://www.scopus.com/inward/record.url?scp=85207335802&partnerID=8YFLogxK
UR - https://www-webofscience-com.db.rsu.lv/wos/alldb/full-record/WOS:001348941100001
U2 - 10.1016/j.bbalip.2024.159571
DO - 10.1016/j.bbalip.2024.159571
M3 - Article
C2 - 39428081
AN - SCOPUS:85207335802
SN - 1388-1981
VL - 1870
JO - Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids
JF - Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids
IS - 1
M1 - 159571
ER -