Cancer microcell initiation and determination

Zane Simsone (Coresponding Author), Tālivaldis Freivalds, Dina Bēma, Indra Miķelsone, Liene Patetko, Juris Bērziņš, Līga Harju, Indulis Buiķis

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Cancer remains one of the leading causes of death worldwide, despite the possibilities to detect early onset of the most common cancer types. The search for the optimal therapy is complicated by the cancer diversity within tumors and the unsynchronized development of cancerous cells. Therefore, it is necessary to characterize cancer cell populations after treatment has been applied, because cancer recurrence is not rare. In our research, we concentrated on small cancer cell subpopulation (microcells) that has a potential to be cancer resistance source. Previously made experiments has shown that these cells in small numbers form in specific circumstances after anticancer treatment. Methods: In experiments described in this research, the anticancer agents’ paclitaxel and doxorubicin were used to stimulate the induction of microcells in fibroblast, cervix adenocarcinoma, and melanoma cell lines. Mainly for the formation of microcells in melanoma cells. The drug-stimulated cells were then characterized in terms of their formation efficiency, morphology, and metabolic activity. Results: We observed the development of cancer microcells and green fluorescent protein (GFP) transfection efficiency after stress. In the time-lapse experiment, we observed microcell formation through a renewal process and GFP expression in the microcells. Additionally, the microcells were viable after anticancer treatment, as indicated by the nicotinamide adenine dinucleotide hydrogen phosphate (NADPH) enzyme activity assay results. Taken together, these findings indicate that cancer microcells are viable and capable of resisting the stress induced by anticancer drugs, and these cells are prone to chemical substance uptake from the environment. Conclusion: Microcells are not only common to a specific cancer type, but can be found in any tumor type. This study could help to understand cancer emergence and recurrence. The appearance of microcells in the studied cancer cell population could be an indicator of the individual anticancer therapy effectiveness and patient survival.

Original languageEnglish
Article number1087
Number of pages15
JournalBMC Cancer
Volume21
Issue number1
DOIs
Publication statusPublished - Dec 2021

Keywords*

  • cancer
  • cancer resistance
  • Cell viability
  • Doxorubicin
  • Microcell
  • NADPH
  • Paclitaxel
  • SK-MEL-28

Field of Science*

  • 3.1 Basic medicine
  • 3.2 Clinical medicine

Publication Type*

  • 1.1. Scientific article indexed in Web of Science and/or Scopus database

Fingerprint

Dive into the research topics of 'Cancer microcell initiation and determination'. Together they form a unique fingerprint.

Cite this