TY - JOUR
T1 - Evaluation of PGP 9.5, NGFR, TGFβ1, FGFR1, MMP-2, AT2R2, SHH, and TUNEL in Primary Obstructive Megaureter Tissue
AU - Junga, Anna
AU - Siņicins, Ivo
AU - Pētersons, Aigars
AU - Pilmane, Māra
N1 - Funding Information:
Our greatest thanks to Assoc. Prof. Jānis Dobelis and Dr Ainārs Ģīlis for providing the study specimen. The author(s) received no financial support for the research, authorship, and/or publication of this article.
Publisher Copyright:
© The Author(s) 2021.
PY - 2022/2
Y1 - 2022/2
N2 - Primary obstructive megaureter (POM) morphogenesis is not fully known. The aim of the study was to evaluate the appearance of different factors that might take part in the pathogenesis of POM. Megaureter tissues of 14 children were stained with hematoxylin and eosin as well as with immunohistochemistry for protein gene product 9.5, nerve growth factor receptor, transforming growth factor beta 1 (TGFβ1), fibroblast growth factor receptor 1 (FGFR1), matrix metalloproteinase 2 (MMP-2), angiotensin 2 receptor type 2, and sonic hedgehog (SHH) protein. Apoptosis was detected by terminal dUTP nick-end labeling reaction. POM tissues revealed transitional epithelium with scattered vacuolization, submucosa with inflammatory cells, and focally vacuolized and chaotically organized muscle layers. Apoptosis, appearance of MMP-2, FGFR1, and SHH prevailed, but TGFβ1 positive cell number was lower in patients. Correlation between MMP-2 in epithelium and endothelium, FGFR1 and MMP-2 in epithelium, and TGFβ1 in epithelium and connective tissue in patients was detected. POM morphopathogenesis involves an apoptotic cell death of epithelium and smooth muscle as well as tissue degradation in epithelium and connective tissue of the ureter wall. The decrease of tissue growth through diminished TGFβ1 expression and stimulation of FGFR1 and MMP-2 suggests a disbalance of tissue remodelation in the megaureter wall.
AB - Primary obstructive megaureter (POM) morphogenesis is not fully known. The aim of the study was to evaluate the appearance of different factors that might take part in the pathogenesis of POM. Megaureter tissues of 14 children were stained with hematoxylin and eosin as well as with immunohistochemistry for protein gene product 9.5, nerve growth factor receptor, transforming growth factor beta 1 (TGFβ1), fibroblast growth factor receptor 1 (FGFR1), matrix metalloproteinase 2 (MMP-2), angiotensin 2 receptor type 2, and sonic hedgehog (SHH) protein. Apoptosis was detected by terminal dUTP nick-end labeling reaction. POM tissues revealed transitional epithelium with scattered vacuolization, submucosa with inflammatory cells, and focally vacuolized and chaotically organized muscle layers. Apoptosis, appearance of MMP-2, FGFR1, and SHH prevailed, but TGFβ1 positive cell number was lower in patients. Correlation between MMP-2 in epithelium and endothelium, FGFR1 and MMP-2 in epithelium, and TGFβ1 in epithelium and connective tissue in patients was detected. POM morphopathogenesis involves an apoptotic cell death of epithelium and smooth muscle as well as tissue degradation in epithelium and connective tissue of the ureter wall. The decrease of tissue growth through diminished TGFβ1 expression and stimulation of FGFR1 and MMP-2 suggests a disbalance of tissue remodelation in the megaureter wall.
KW - atrophy
KW - development
KW - growth factors
KW - innervation
UR - http://www.scopus.com/inward/record.url?scp=85121743287&partnerID=8YFLogxK
U2 - 10.1369/00221554211063515
DO - 10.1369/00221554211063515
M3 - Article
C2 - 34915763
SN - 0022-1554
VL - 70
SP - 139
EP - 149
JO - Journal of Histochemistry and Cytochemistry
JF - Journal of Histochemistry and Cytochemistry
IS - 2
ER -