Abstract
Both human herpes viruses and Chlamydia are highly prevalent in the human population and are detected together in different human disorders. Here, we demonstrate that co-infection with human herpes virus 6 (HHV6) interferes with the developmental cycle of C. trachomatis and induces persistence. Induction of chlamydial persistence by HHV6 is independent of productive virus infection, but requires the interaction and uptake of the virus by the host cell. On the other hand, viral uptake is strongly promoted under co-infection conditions. Host cell glutathione reductase activity was suppressed by HHV6 causing NADPH accumulation, decreased formation of reduced glutathione and increased oxidative stress. Prevention of oxidative stress restored infectivity of Chlamydia after HHV6-induced persistence. We show that co-infection with Herpes simplex virus 1 or human Cytomegalovirus also induces chlamydial persistence by a similar mechanism suggesting that Chlamydia -human herpes virus co-infections are evolutionary shaped interactions with a thus far unrecognized broad significance.
Original language | English |
---|---|
Article number | e47427 |
Number of pages | 1 |
Journal | PloS one |
Volume | 7 |
Issue number | 10 |
DOIs | |
Publication status | Published - 15 Oct 2012 |
Externally published | Yes |
Keywords*
- Biological Evolution
- Chlamydia Infections/metabolism
- Chlamydia trachomatis/metabolism
- Coinfection
- HeLa Cells
- Herpesvirus 6, Human/metabolism
- Humans
- Oxidative Stress/physiology
- Roseolovirus Infections/metabolism
Field of Science*
- 3.3 Health sciences
Publication Type*
- 1.1. Scientific article indexed in Web of Science and/or Scopus database