Microbiome symbionts and diet diversity incur costs on the immune system of insect larvae

Indrikis A. Krams (Corresponding Author), Sanita Kecko, Priit Jõers, Giedrius Trakimas, Didzis Elferts, Ronalds Krams, Severi Luoto, Markus J. Rantala, Inna Inashkina, Dita Gudrā, Dāvids Fridmanis, Jorge Contreras-Garduño, Lelde Grantina-Ievina, Tatjana Krama

Research output: Contribution to journalArticlepeer-review

59 Citations (Scopus)

Abstract

Communities of symbiotic microorganisms that colonize the gastrointestinal tract play an important role in food digestion and protection against opportunistic microbes. Diet diversity increases the number of symbionts in the intestines, a benefit that is considered to imposenocost forthe host organism. However, lessisknown about the possible immunological investmentsthat hosts have to make inorder to control the infections caused by symbiont populations that increase because of diet diversity. Using taxonomical composition analysis of the 16S rRNAV3 region, we show that enterococci are the dominating group of bacteria in the midgut of the larvae of the greater wax moth (Galleria mellonella). We found that the number of colony-forming units of enterococci and expressions of certain immunity-related antimicrobial peptide (AMP) genes such as Gallerimycin, Gloverin, 6-tox, Cecropin-D and Galiomicin increased in response to a more diverse diet, whichin turn decreased the encapsulation response ofthe larvae. Treatment with antibiotics significantly lowered the expression of all AMP genes. Diet and antibiotic treatment interaction did not affect the expression of Gloverin and Galiomicin AMP genes, but significantly influenced the expression of Gallerimycin, 6-tox and Cecropin-D. Taken together, our results suggest that diet diversity influences microbiome diversity and AMP gene expression, ultimately affecting an organism's capacity to mount an immune response. Elevated basal levels of immunity-related genes (Gloverin and Galiomicin) might act as a prophylactic against opportunistic infections and as a mechanism that controls the gut symbionts. This would indicate that a diverse diet imposes higher immunity costs on organisms.

Original languageEnglish
Pages (from-to)4204-4212
Number of pages9
JournalJournal of Experimental Biology
Volume220
Issue number22
DOIs
Publication statusPublished - 15 Nov 2017
Externally publishedYes

Keywords*

  • Antimicrobial peptides
  • Bacterial endosymbionts
  • Diet diversity
  • Encapsulation response
  • Galleria mellonella
  • Immunity

Field of Science*

  • 1.6 Biological sciences
  • 1.5 Earth and related Environmental sciences
  • 2.8 Environmental biotechnology
  • 4.5 Other agricultural sciences

Publication Type*

  • 1.1. Scientific article indexed in Web of Science and/or Scopus database

Fingerprint

Dive into the research topics of 'Microbiome symbionts and diet diversity incur costs on the immune system of insect larvae'. Together they form a unique fingerprint.

Cite this