Preparation and Characterization of Photo-Cross-Linkable Methacrylated Silk Fibroin and Methacrylated Hyaluronic Acid Composite Hydrogels

Jhaleh Amirian (Corresponding Author), Jacek K Wychowaniec, Matteo D Este, Andrea J Vernengo, Anastasija Metlova, Antons Sizovs, Agnese Brangule (Corresponding Author), Dace Bandere (Corresponding Author)

    Research output: Contribution to journalArticlepeer-review

    4 Citations (Scopus)

    Abstract

    Composite biomaterials with excellent biocompatibility and biodegradability are crucial in tissue engineering. In this work, a composite protein and polysaccharide photo-cross-linkable hydrogel was prepared using silk fibroin methacrylate (SFMA) and hyaluronic acid methacrylate (HAMA). SFMA was obtained by the methacrylation of degummed SF with glycidyl methacrylate (GMA), while HA was methacrylated by 2-aminoethyl methacrylate hydrochloride (AEMA). We investigated the effect of the addition of 1 wt % HAMA to 5, 10, and 20 wt % SFMA, which resulted in an increase in both static and cycling mechanical strengths. All composite hydrogels gelled under UV light in <30 s, allowing for rapid stabilization and stiffness increases. The biocompatibility of the hydrogels was confirmed by direct and indirect contact methods and by evaluation against the NIH3T3 and MC3T3 cell lines with a live-dead assay by confocal imaging. The range of obtained mechanical properties from developed composite and UV-cross-linkable hydrogels sets the basis as possible future biomaterials for various biomedical applications.

    Original languageEnglish
    Pages (from-to)7078-7097
    Number of pages20
    JournalBiomacromolecules
    Volume25
    Issue number11
    DOIs
    Publication statusPublished - 11 Nov 2024

    Keywords*

    • Hyaluronic Acid/chemistry
    • NIH 3T3 Cells
    • Biocompatible Materials/chemistry
    • Fibroins/chemistry
    • Tissue Engineering/methods
    • Animals
    • Ultraviolet Rays
    • Cross-Linking Reagents/chemistry
    • Methacrylates/chemistry
    • Hydrogels/chemistry
    • Mice

    Field of Science*

    • 1.6 Biological sciences
    • 3.1 Basic medicine

    Publication Type*

    • 1.1. Scientific article indexed in Web of Science and/or Scopus database

    Fingerprint

    Dive into the research topics of 'Preparation and Characterization of Photo-Cross-Linkable Methacrylated Silk Fibroin and Methacrylated Hyaluronic Acid Composite Hydrogels'. Together they form a unique fingerprint.

    Cite this