Role of the Circadian Clock “Death-Loop” in the DNA Damage Response Underpinning Cancer Treatment Resistance

Ninel Miriam Vainshelbaum, Kristine Salmina, Bogdan I. Gerashchenko, Marija Lazovska, Pawel Zayakin, Mark Steven Cragg, Dace Pjanova, Jekaterina Erenpreisa (Coresponding Author)

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)
7 Downloads (Pure)


Here, we review the role of the circadian clock (CC) in the resistance of cancer cells to genotoxic treatments in relation to whole-genome duplication (WGD) and telomere-length regulation. The CC drives the normal cell cycle, tissue differentiation, and reciprocally regulates telomere elongation. However, it is deregulated in embryonic stem cells (ESCs), the early embryo, and cancer. Here, we review the DNA damage response of cancer cells and a similar impact on the cell cycle to that found in ESCs—overcoming G1/S, adapting DNA damage checkpoints, tolerating DNA damage, coupling telomere erosion to accelerated cell senescence, and favouring transition by mitotic slippage into the ploidy cycle (reversible polyploidy). Polyploidy decelerates the CC. We report an intriguing positive correlation between cancer WGD and the deregulation of the CC assessed by bioinformatics on 11 primary cancer datasets (rho = 0.83; p < 0.01). As previously shown, the cancer cells undergoing mitotic slippage cast off telomere fragments with TERT, restore the telomeres by ALT-recombination, and return their depolyploidised offspring to telomerase-dependent regulation. By reversing this polyploidy and the CC “death loop”, the mitotic cycle and Hayflick limit count are thus again renewed. Our review and proposed mechanism support a life-cycle concept of cancer and highlight the perspective of cancer treatment by differentiation.

Original languageEnglish
Article number880
Issue number5
Publication statusPublished - 1 Mar 2022
Externally publishedYes


  • Cancer resistance
  • Cell cycle
  • Circadian clock (CC)
  • DNA damage response (DDR)
  • Genotoxic treatments
  • Hayflick limit
  • Reprogramming
  • Reversible polyploidy
  • Senescence
  • Telomeres

Field of Science*

  • 1.6 Biological sciences
  • 3.1 Basic medicine

Publication Type*

  • 1.1. Scientific article indexed in Web of Science and/or Scopus database


Dive into the research topics of 'Role of the Circadian Clock “Death-Loop” in the DNA Damage Response Underpinning Cancer Treatment Resistance'. Together they form a unique fingerprint.

Cite this