Synthesis and Characterization of Novel Amphiphilic N-Benzyl 1,4-Dihydropyridine Derivatives—Evaluation of Lipid Monolayer and Self-Assembling Properties

Anna Krapivina, Davis Lacis, Martins Rucins, Mara Plotniece, Karlis Pajuste, Arkadij Sobolev, Aiva Plotniece (Corresponding Author)

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)
12 Downloads (Pure)

Abstract

Liposomes and other nanoparticles have been widely studied as innovative nanomaterials because of their unique properties. Pyridinium salts, on the basis of 1,4-dihydropyridine (1,4-DHP) core, have gained significant attention due to their self-assembling properties and DNA delivery activity. This study aimed to synthesize and characterize original N-benzyl substituted 1,4-dihydropyridines and evaluate the influence on structure modifications on compound physicochemical and self-assembling properties. Studies of monolayers composed of 1,4-DHP amphiphiles revealed that the mean molecular areas values were dependent on the compound structure. Therefore, the introduction of N-benzyl substituent to the 1,4-DHP ring enlarged the mean molecular area by almost half. All nanoparticle samples obtained by ethanol injection method possessed positive surface charge and average diameter of 395–2570 nm. The structure of the cationic head-group affects the size of the formed nanoparticles. The diameter of lipoplexes formed by 1,4-DHP amphiphiles and mRNA at nitrogen/phosphate (N/P) charge ratios of 1, 2, and 5 were in the range of 139–2959 nm and were related to the structure of compound and N/P charge ratio. The preliminary results indicated that more prospective combination are the lipoplexes formed by pyridinium moieties containing N-unsubstituted 1,4-DHP amphiphile 1 and pyridinium or substituted pyridinium moieties containing N-benzyl 1,4-DHP amphiphiles 5a–c at N/P charge ratio of 5, which would be good candidates for potential application in gene therapy.

Original languageEnglish
Article number4206
JournalMaterials
Volume16
Issue number12
DOIs
Publication statusPublished - Jun 2023

Keywords*

  • DLS
  • langmuir monolayer
  • lipoplexes
  • mean molecular area
  • N-benzyl 1,4-dihydropyridines
  • nanoparticles
  • pyridinium amphiphiles
  • self-assembling

Field of Science*

  • 3.1 Basic medicine

Publication Type*

  • 1.1. Scientific article indexed in Web of Science and/or Scopus database

Fingerprint

Dive into the research topics of 'Synthesis and Characterization of Novel Amphiphilic N-Benzyl 1,4-Dihydropyridine Derivatives—Evaluation of Lipid Monolayer and Self-Assembling Properties'. Together they form a unique fingerprint.

Cite this