The Rate of Leg Fat Oxidation Is Not Attenuated During Incremental Intensity One-Leg Knee Extensor Exercise

J. W. Helge (Corresponding Author), C. E. Shannon, B. Stallknecht, F. B. Stephens, P. L. Greenhaff, Flemming Dela

Research output: Contribution to journalArticlepeer-review

1 Downloads (Pure)

Abstract

It is not clear if fat oxidation is attenuated at higher exercise intensities, when exercising with a small muscle mass, and therefore, we studied leg fat oxidation during graded one-leg exercise. Ten males (age: 27 ± 2 years, body mass: 82 ± 3 kg, BMI: 24 ± 1 kg m−2, V̇O2max: 49 ± 2 mL min−1 kg−1) performed one-leg exercise at 25% of maximal workload (Wmax) for 30 min, followed by 120-min exercise at 55% Wmax with the contralateral leg, and finally 30-min exercise at 85% Wmax with the first leg. Blood was sampled from an artery and both femoral veins, and blood flow was determined using Doppler ultrasound. Muscle biopsies were obtained before and after 30 min at each workload. One-way RM ANOVA was applied to determine the impact of exercise intensity. Data are expressed as mean ± SEM. From rest through exercise average blood flow (0.4 ± 0.1, 2.1 ± 0.1, 2.6 ± 0.2, 3.7 ± 0.2 L min−1) and oxygen uptake across the leg (0.03 ± 0.01, 0.23 ± 0.02, 0.35 ± 0.03, 0.53 ± 0.04 L min−1) increased with exercise intensity (p < 0.001). Leg RQ (0.76 ± 0.04, 0.86 ± 0.02,0.87 ± 0.01, 0.92 ± 0.01, p < 0.001), leg plasma FA uptake (2 ± 2, 46 ± 8,83 ± 9, 114 ± 16 μmol min−1; p < 0.001) and rate of leg fat oxidation (0.016 ± 0.005, 0.062 ± 0.012, 0.075 ± 0.011, 0.084 ± 0.018 g min−1, p < 0.007) increased with exercise intensity. Muscle-free carnitine content was unchanged from rest at 25% Wmax and decreased after 30 min exercise at 55% and 85% Wmax (17.4 ± 1.6, 16.6 ± 0.7, 14.5 ± 1.2, 10.5 ± 1.0 mmol/kg dry muscle, respectively; p < 0.006). During incremental one-leg exercise, the rate of leg fat oxidation was not attenuated with increasing exercise intensity, probably due to an insufficient muscle metabolic stress response.

Original languageEnglish
Article numbere14737
Number of pages10
JournalScandinavian Journal of Medicine and Science in Sports
Volume34
Issue number10
DOIs
Publication statusPublished - Oct 2024

Keywords*

  • carnitine
  • exercise
  • metabolism
  • muscle
  • one-leg exercise

Field of Science*

  • 3.2 Clinical medicine
  • 3.3 Health sciences

Publication Type*

  • 1.1. Scientific article indexed in Web of Science and/or Scopus database

Fingerprint

Dive into the research topics of 'The Rate of Leg Fat Oxidation Is Not Attenuated During Incremental Intensity One-Leg Knee Extensor Exercise'. Together they form a unique fingerprint.

Cite this